Metamath Proof Explorer


Theorem zneoALTV

Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of Apostol p. 28. (Contributed by NM, 31-Jul-2004) (Revised by AV, 16-Jun-2020)

Ref Expression
Assertion zneoALTV AEvenBOddAB

Proof

Step Hyp Ref Expression
1 oddneven BOdd¬BEven
2 nelne2 AEven¬BEvenAB
3 1 2 sylan2 AEvenBOddAB