Description: Theorem 19.25 of Margaris p. 90. (Contributed by NM, 12-Mar-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | 19.25 | ⊢ ( ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑦 ∀ 𝑥 𝜑 → ∃ 𝑦 ∃ 𝑥 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35 | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) | |
2 | 1 | biimpi | ⊢ ( ∃ 𝑥 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
3 | 2 | aleximi | ⊢ ( ∀ 𝑦 ∃ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃ 𝑦 ∀ 𝑥 𝜑 → ∃ 𝑦 ∃ 𝑥 𝜓 ) ) |