Metamath Proof Explorer


Theorem 19.25

Description: Theorem 19.25 of Margaris p. 90. (Contributed by NM, 12-Mar-1993)

Ref Expression
Assertion 19.25 ( ∀ 𝑦𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑦𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.35 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
2 1 biimpi ( ∃ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
3 2 aleximi ( ∀ 𝑦𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑦𝑥 𝜓 ) )