Description: Theorem 19.27 of Margaris p. 90. See 19.27v for a version requiring fewer axioms. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 19.27.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| Assertion | 19.27 | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.27.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | 19.26 | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ) | |
| 3 | 1 | 19.3 | ⊢ ( ∀ 𝑥 𝜓 ↔ 𝜓 ) |
| 4 | 3 | anbi2i | ⊢ ( ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ 𝜓 ) ) |
| 5 | 2 4 | bitri | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ 𝜓 ) ) |