Description: Theorem 19.33 of Margaris p. 90. (Contributed by NM, 12-Mar-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.33 | ⊢ ( ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc | ⊢ ( 𝜑 → ( 𝜑 ∨ 𝜓 ) ) | |
| 2 | 1 | alimi | ⊢ ( ∀ 𝑥 𝜑 → ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ) |
| 3 | olc | ⊢ ( 𝜓 → ( 𝜑 ∨ 𝜓 ) ) | |
| 4 | 3 | alimi | ⊢ ( ∀ 𝑥 𝜓 → ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ) |
| 5 | 2 4 | jaoi | ⊢ ( ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑 ∨ 𝜓 ) ) |