Metamath Proof Explorer


Theorem 19.39

Description: Theorem 19.39 of Margaris p. 90. (Contributed by NM, 12-Mar-1993)

Ref Expression
Assertion 19.39 ( ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.2 ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜑 )
2 1 imim1i ( ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
3 19.35 ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) )
4 2 3 sylibr ( ( ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑𝜓 ) )