Metamath Proof Explorer
		
		
		
		Description:  Nested unique existential quantifier and at-most-one quantifier.
     (Contributed by NM, 3-Dec-2001)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					2eumo | 
					⊢  ( ∃! 𝑥 ∃* 𝑦 𝜑  →  ∃* 𝑥 ∃! 𝑦 𝜑 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							euimmo | 
							⊢ ( ∀ 𝑥 ( ∃! 𝑦 𝜑  →  ∃* 𝑦 𝜑 )  →  ( ∃! 𝑥 ∃* 𝑦 𝜑  →  ∃* 𝑥 ∃! 𝑦 𝜑 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eumo | 
							⊢ ( ∃! 𝑦 𝜑  →  ∃* 𝑦 𝜑 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mpg | 
							⊢ ( ∃! 𝑥 ∃* 𝑦 𝜑  →  ∃* 𝑥 ∃! 𝑦 𝜑 )  |