Metamath Proof Explorer


Theorem 2halvesd

Description: Two halves make a whole. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis 2timesd.1 ( 𝜑𝐴 ∈ ℂ )
Assertion 2halvesd ( 𝜑 → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 2timesd.1 ( 𝜑𝐴 ∈ ℂ )
2 2halves ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 )
3 1 2 syl ( 𝜑 → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 )