Metamath Proof Explorer
Description: Example for logbprmirr . The logarithm of three to base two is
irrational. (Contributed by AV, 31-Dec-2022)
|
|
Ref |
Expression |
|
Assertion |
2logb3irr |
⊢ ( 2 logb 3 ) ∈ ( ℝ ∖ ℚ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3prm |
⊢ 3 ∈ ℙ |
| 2 |
|
2prm |
⊢ 2 ∈ ℙ |
| 3 |
|
2re |
⊢ 2 ∈ ℝ |
| 4 |
|
2lt3 |
⊢ 2 < 3 |
| 5 |
3 4
|
gtneii |
⊢ 3 ≠ 2 |
| 6 |
|
logbprmirr |
⊢ ( ( 3 ∈ ℙ ∧ 2 ∈ ℙ ∧ 3 ≠ 2 ) → ( 2 logb 3 ) ∈ ( ℝ ∖ ℚ ) ) |
| 7 |
1 2 5 6
|
mp3an |
⊢ ( 2 logb 3 ) ∈ ( ℝ ∖ ℚ ) |