Description: The closed subspace closure of the empty set. (Contributed by NM, 12-Sep-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 2pol0.o | ⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) | |
Assertion | 2pol0N | ⊢ ( 𝐾 ∈ HL → ( ⊥ ‘ ( ⊥ ‘ ∅ ) ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2pol0.o | ⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) | |
2 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
3 | 2 1 | pol0N | ⊢ ( 𝐾 ∈ HL → ( ⊥ ‘ ∅ ) = ( Atoms ‘ 𝐾 ) ) |
4 | 3 | fveq2d | ⊢ ( 𝐾 ∈ HL → ( ⊥ ‘ ( ⊥ ‘ ∅ ) ) = ( ⊥ ‘ ( Atoms ‘ 𝐾 ) ) ) |
5 | 2 1 | pol1N | ⊢ ( 𝐾 ∈ HL → ( ⊥ ‘ ( Atoms ‘ 𝐾 ) ) = ∅ ) |
6 | 4 5 | eqtrd | ⊢ ( 𝐾 ∈ HL → ( ⊥ ‘ ( ⊥ ‘ ∅ ) ) = ∅ ) |