Metamath Proof Explorer
		
		
		
		Description:  Deduction doubly substituting both sides of a biconditional.
       (Contributed by AV, 30-Jul-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sbbid.1 | ⊢ Ⅎ 𝑥 𝜑 | 
					
						|  |  | sbbid.2 | ⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) ) | 
					
						|  |  | 2sbbid.1 | ⊢ Ⅎ 𝑦 𝜑 | 
				
					|  | Assertion | 2sbbid | ⊢  ( 𝜑  →  ( [ 𝑡  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜓  ↔  [ 𝑡  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜒 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbbid.1 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | sbbid.2 | ⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 |  | 2sbbid.1 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 4 | 3 2 | sbbid | ⊢ ( 𝜑  →  ( [ 𝑢  /  𝑦 ] 𝜓  ↔  [ 𝑢  /  𝑦 ] 𝜒 ) ) | 
						
							| 5 | 1 4 | sbbid | ⊢ ( 𝜑  →  ( [ 𝑡  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜓  ↔  [ 𝑡  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜒 ) ) |