Metamath Proof Explorer


Theorem 5m4e1

Description: Prove that 5 - 4 = 1. (Contributed by David A. Wheeler, 31-Jan-2017)

Ref Expression
Assertion 5m4e1 ( 5 − 4 ) = 1

Proof

Step Hyp Ref Expression
1 5cn 5 ∈ ℂ
2 4cn 4 ∈ ℂ
3 ax-1cn 1 ∈ ℂ
4 4p1e5 ( 4 + 1 ) = 5
5 1 2 3 4 subaddrii ( 5 − 4 ) = 1