Metamath Proof Explorer
Description: Absolute value of difference of absolute values. (Contributed by Paul
Chapman, 7-Sep-2007)
|
|
Ref |
Expression |
|
Hypotheses |
abs2difabsi.1 |
⊢ 𝐴 ∈ ℂ |
|
|
abs2difabsi.2 |
⊢ 𝐵 ∈ ℂ |
|
Assertion |
abs2difabsi |
⊢ ( abs ‘ ( ( abs ‘ 𝐴 ) − ( abs ‘ 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
abs2difabsi.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
abs2difabsi.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
abs2difabs |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( ( abs ‘ 𝐴 ) − ( abs ‘ 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
4 |
1 2 3
|
mp2an |
⊢ ( abs ‘ ( ( abs ‘ 𝐴 ) − ( abs ‘ 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) |