Metamath Proof Explorer
Description: Absolute value of differences around common element. (Contributed by NM, 2-Oct-1999)
|
|
Ref |
Expression |
|
Hypotheses |
absvalsqi.1 |
⊢ 𝐴 ∈ ℂ |
|
|
abssub.2 |
⊢ 𝐵 ∈ ℂ |
|
|
abs3dif.3 |
⊢ 𝐶 ∈ ℂ |
|
Assertion |
abs3difi |
⊢ ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
absvalsqi.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
abssub.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
abs3dif.3 |
⊢ 𝐶 ∈ ℂ |
4 |
|
abs3dif |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) ) |
5 |
1 2 3 4
|
mp3an |
⊢ ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( abs ‘ ( 𝐴 − 𝐶 ) ) + ( abs ‘ ( 𝐶 − 𝐵 ) ) ) |