| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ack | ⊢ Ack  =  seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) | 
						
							| 2 | 1 | fveq1i | ⊢ ( Ack ‘ 0 )  =  ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ 0 ) | 
						
							| 3 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 4 |  | seq1 | ⊢ ( 0  ∈  ℤ  →  ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ 0 )  =  ( ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ‘ 0 ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( seq 0 ( ( 𝑓  ∈  V ,  𝑗  ∈  V  ↦  ( 𝑛  ∈  ℕ0  ↦  ( ( ( IterComp ‘ 𝑓 ) ‘ ( 𝑛  +  1 ) ) ‘ 1 ) ) ) ,  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ) ‘ 0 )  =  ( ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ‘ 0 ) | 
						
							| 6 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 7 |  | iftrue | ⊢ ( 𝑖  =  0  →  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ) | 
						
							| 8 |  | eqid | ⊢ ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) )  =  ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) | 
						
							| 9 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 10 | 9 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) )  ∈  V | 
						
							| 11 | 7 8 10 | fvmpt | ⊢ ( 0  ∈  ℕ0  →  ( ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ) | 
						
							| 12 | 6 11 | ax-mp | ⊢ ( ( 𝑖  ∈  ℕ0  ↦  if ( 𝑖  =  0 ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) ,  𝑖 ) ) ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) | 
						
							| 13 | 2 5 12 | 3eqtri | ⊢ ( Ack ‘ 0 )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝑛  +  1 ) ) |