Metamath Proof Explorer


Theorem addassnni

Description: Associative law for addition. (Contributed by metakunt, 25-Apr-2024)

Ref Expression
Hypotheses addassnni.1 𝐴 ∈ ℕ
addassnni.2 𝐵 ∈ ℕ
addassnni.3 𝐶 ∈ ℕ
Assertion addassnni ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) )

Proof

Step Hyp Ref Expression
1 addassnni.1 𝐴 ∈ ℕ
2 addassnni.2 𝐵 ∈ ℕ
3 addassnni.3 𝐶 ∈ ℕ
4 1 nncni 𝐴 ∈ ℂ
5 2 nncni 𝐵 ∈ ℂ
6 3 nncni 𝐶 ∈ ℂ
7 4 5 6 addassi ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) )