Metamath Proof Explorer
Description: Associative law for addition. (Contributed by metakunt, 25-Apr-2024)
|
|
Ref |
Expression |
|
Hypotheses |
addassnni.1 |
⊢ 𝐴 ∈ ℕ |
|
|
addassnni.2 |
⊢ 𝐵 ∈ ℕ |
|
|
addassnni.3 |
⊢ 𝐶 ∈ ℕ |
|
Assertion |
addassnni |
⊢ ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
addassnni.1 |
⊢ 𝐴 ∈ ℕ |
2 |
|
addassnni.2 |
⊢ 𝐵 ∈ ℕ |
3 |
|
addassnni.3 |
⊢ 𝐶 ∈ ℕ |
4 |
1
|
nncni |
⊢ 𝐴 ∈ ℂ |
5 |
2
|
nncni |
⊢ 𝐵 ∈ ℂ |
6 |
3
|
nncni |
⊢ 𝐶 ∈ ℂ |
7 |
4 5 6
|
addassi |
⊢ ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( 𝐴 + ( 𝐵 + 𝐶 ) ) |