Metamath Proof Explorer
Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
adddirp1d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
adddirp1d.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
|
Assertion |
adddirp1d |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) + 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
adddirp1d.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
adddirp1d.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
4 |
1 3 2
|
adddird |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) + ( 1 · 𝐵 ) ) ) |
5 |
2
|
mulid2d |
⊢ ( 𝜑 → ( 1 · 𝐵 ) = 𝐵 ) |
6 |
5
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) + ( 1 · 𝐵 ) ) = ( ( 𝐴 · 𝐵 ) + 𝐵 ) ) |
7 |
4 6
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) · 𝐵 ) = ( ( 𝐴 · 𝐵 ) + 𝐵 ) ) |