Metamath Proof Explorer


Theorem aiffnbandciffatnotciffb

Description: Given a is equivalent to (not b), c is equivalent to a, there exists a proof for ( not ( c iff b ) ). (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses aiffnbandciffatnotciffb.1 ( 𝜑 ↔ ¬ 𝜓 )
aiffnbandciffatnotciffb.2 ( 𝜒𝜑 )
Assertion aiffnbandciffatnotciffb ¬ ( 𝜒𝜓 )

Proof

Step Hyp Ref Expression
1 aiffnbandciffatnotciffb.1 ( 𝜑 ↔ ¬ 𝜓 )
2 aiffnbandciffatnotciffb.2 ( 𝜒𝜑 )
3 2 1 bitri ( 𝜒 ↔ ¬ 𝜓 )
4 xor3 ( ¬ ( 𝜒𝜓 ) ↔ ( 𝜒 ↔ ¬ 𝜓 ) )
5 3 4 mpbir ¬ ( 𝜒𝜓 )