Description: Given a is equivalent to F. , there exists a proof for not a. (Contributed by Jarvin Udandy, 30-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | aisfina.1 | ⊢ ( 𝜑 ↔ ⊥ ) | |
| Assertion | aisfina | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aisfina.1 | ⊢ ( 𝜑 ↔ ⊥ ) | |
| 2 | nbfal | ⊢ ( ¬ 𝜑 ↔ ( 𝜑 ↔ ⊥ ) ) | |
| 3 | 1 2 | mpbir | ⊢ ¬ 𝜑 |