Description: Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atl01dm.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atl01dm.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| atl01dm.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | ||
| Assertion | atl0dm | ⊢ ( 𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atl01dm.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atl01dm.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 3 | atl01dm.g | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 5 | eqid | ⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) | |
| 6 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
| 7 | 1 3 4 5 6 | isatl | ⊢ ( 𝐾 ∈ AtLat ↔ ( 𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ≠ ( 0. ‘ 𝐾 ) → ∃ 𝑦 ∈ ( Atoms ‘ 𝐾 ) 𝑦 ( le ‘ 𝐾 ) 𝑥 ) ) ) |
| 8 | 7 | simp2bi | ⊢ ( 𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺 ) |