Metamath Proof Explorer


Axiom ax-frege28

Description: Contraposition. Identical to con3 . Theorem *2.16 of WhiteheadRussell p. 103. Axiom 28 of Frege1879 p. 43. (Contributed by RP, 24-Dec-2019) (New usage is discouraged.)

Ref Expression
Assertion ax-frege28 ( ( 𝜑𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 wph 𝜑
1 wps 𝜓
2 0 1 wi ( 𝜑𝜓 )
3 1 wn ¬ 𝜓
4 0 wn ¬ 𝜑
5 3 4 wi ( ¬ 𝜓 → ¬ 𝜑 )
6 2 5 wi ( ( 𝜑𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) )