| Step |
Hyp |
Ref |
Expression |
| 0 |
|
vx |
⊢ 𝑥 |
| 1 |
|
vy |
⊢ 𝑦 |
| 2 |
1
|
cv |
⊢ 𝑦 |
| 3 |
0
|
cv |
⊢ 𝑥 |
| 4 |
2 3
|
wcel |
⊢ 𝑦 ∈ 𝑥 |
| 5 |
|
vz |
⊢ 𝑧 |
| 6 |
5
|
cv |
⊢ 𝑧 |
| 7 |
6 2
|
wcel |
⊢ 𝑧 ∈ 𝑦 |
| 8 |
7
|
wn |
⊢ ¬ 𝑧 ∈ 𝑦 |
| 9 |
8 5
|
wal |
⊢ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 |
| 10 |
4 9
|
wa |
⊢ ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) |
| 11 |
10 1
|
wex |
⊢ ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) |
| 12 |
6 3
|
wcel |
⊢ 𝑧 ∈ 𝑥 |
| 13 |
|
vw |
⊢ 𝑤 |
| 14 |
13
|
cv |
⊢ 𝑤 |
| 15 |
14 6
|
wcel |
⊢ 𝑤 ∈ 𝑧 |
| 16 |
14 2
|
wcel |
⊢ 𝑤 ∈ 𝑦 |
| 17 |
14 2
|
wceq |
⊢ 𝑤 = 𝑦 |
| 18 |
16 17
|
wo |
⊢ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) |
| 19 |
15 18
|
wb |
⊢ ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) |
| 20 |
19 13
|
wal |
⊢ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) |
| 21 |
12 20
|
wa |
⊢ ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) |
| 22 |
21 5
|
wex |
⊢ ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) |
| 23 |
4 22
|
wi |
⊢ ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
| 24 |
23 1
|
wal |
⊢ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) |
| 25 |
11 24
|
wa |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |
| 26 |
25 0
|
wex |
⊢ ∃ 𝑥 ( ∃ 𝑦 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ¬ 𝑧 ∈ 𝑦 ) ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑧 ↔ ( 𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦 ) ) ) ) ) |