Metamath Proof Explorer
Description: Second property of three of the provability predicate. (Contributed by BJ, 3-Apr-2019)
|
|
Ref |
Expression |
|
Assertion |
ax-prv2 |
⊢ ( Prv ( 𝜑 → 𝜓 ) → ( Prv 𝜑 → Prv 𝜓 ) ) |
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
wph |
⊢ 𝜑 |
| 1 |
|
wps |
⊢ 𝜓 |
| 2 |
0 1
|
wi |
⊢ ( 𝜑 → 𝜓 ) |
| 3 |
2
|
cprvb |
⊢ Prv ( 𝜑 → 𝜓 ) |
| 4 |
0
|
cprvb |
⊢ Prv 𝜑 |
| 5 |
1
|
cprvb |
⊢ Prv 𝜓 |
| 6 |
4 5
|
wi |
⊢ ( Prv 𝜑 → Prv 𝜓 ) |
| 7 |
3 6
|
wi |
⊢ ( Prv ( 𝜑 → 𝜓 ) → ( Prv 𝜑 → Prv 𝜓 ) ) |