| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfcleq | ⊢ ( 𝑥  =  𝑦  ↔  ∀ 𝑡 ( 𝑡  ∈  𝑥  ↔  𝑡  ∈  𝑦 ) ) | 
						
							| 2 | 1 | biimpi | ⊢ ( 𝑥  =  𝑦  →  ∀ 𝑡 ( 𝑡  ∈  𝑥  ↔  𝑡  ∈  𝑦 ) ) | 
						
							| 3 |  | biimp | ⊢ ( ( 𝑡  ∈  𝑥  ↔  𝑡  ∈  𝑦 )  →  ( 𝑡  ∈  𝑥  →  𝑡  ∈  𝑦 ) ) | 
						
							| 4 | 2 3 | sylg | ⊢ ( 𝑥  =  𝑦  →  ∀ 𝑡 ( 𝑡  ∈  𝑥  →  𝑡  ∈  𝑦 ) ) | 
						
							| 5 |  | ax8 | ⊢ ( 𝑧  =  𝑡  →  ( 𝑧  ∈  𝑥  →  𝑡  ∈  𝑥 ) ) | 
						
							| 6 | 5 | equcoms | ⊢ ( 𝑡  =  𝑧  →  ( 𝑧  ∈  𝑥  →  𝑡  ∈  𝑥 ) ) | 
						
							| 7 |  | ax8 | ⊢ ( 𝑡  =  𝑧  →  ( 𝑡  ∈  𝑦  →  𝑧  ∈  𝑦 ) ) | 
						
							| 8 | 6 7 | imim12d | ⊢ ( 𝑡  =  𝑧  →  ( ( 𝑡  ∈  𝑥  →  𝑡  ∈  𝑦 )  →  ( 𝑧  ∈  𝑥  →  𝑧  ∈  𝑦 ) ) ) | 
						
							| 9 | 8 | spimvw | ⊢ ( ∀ 𝑡 ( 𝑡  ∈  𝑥  →  𝑡  ∈  𝑦 )  →  ( 𝑧  ∈  𝑥  →  𝑧  ∈  𝑦 ) ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝑥  =  𝑦  →  ( 𝑧  ∈  𝑥  →  𝑧  ∈  𝑦 ) ) |