Metamath Proof Explorer


Theorem axin1

Description: 'Not' introduction (intuitionistic logic axiom ax-in1). (Contributed by Jim Kingdon, 21-May-2018) (New usage is discouraged.)

Ref Expression
Assertion axin1 ( ( 𝜑 → ¬ 𝜑 ) → ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 pm2.01 ( ( 𝜑 → ¬ 𝜑 ) → ¬ 𝜑 )