Description: Variant of equsalvw . (Contributed by BJ, 7-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-equsalvwd.nf0 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| bj-equsalvwd.nf | ⊢ ( 𝜑 → Ⅎ' 𝑥 𝜒 ) | ||
| bj-equsalvwd.is | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | bj-equsalvwd | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-equsalvwd.nf0 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | bj-equsalvwd.nf | ⊢ ( 𝜑 → Ⅎ' 𝑥 𝜒 ) | |
| 3 | bj-equsalvwd.is | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | 3 | pm5.74da | ⊢ ( 𝜑 → ( ( 𝑥 = 𝑦 → 𝜓 ) ↔ ( 𝑥 = 𝑦 → 𝜒 ) ) ) |
| 5 | 1 4 | albidh | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜒 ) ) ) |
| 6 | bj-equsvt | ⊢ ( Ⅎ' 𝑥 𝜒 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜒 ) ↔ 𝜒 ) ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜒 ) ↔ 𝜒 ) ) |
| 8 | 5 7 | bitrd | ⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜓 ) ↔ 𝜒 ) ) |