Metamath Proof Explorer


Theorem bj-imbi12

Description: Uncurried (imported) form of imbi12 . (Contributed by BJ, 6-May-2019)

Ref Expression
Assertion bj-imbi12 ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 imbi12 ( ( 𝜑𝜓 ) → ( ( 𝜒𝜃 ) → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) ) ) )
2 1 imp ( ( ( 𝜑𝜓 ) ∧ ( 𝜒𝜃 ) ) → ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) ) )