Metamath Proof Explorer


Theorem bj-rrhatsscchat

Description: The real projective line is included in the complex projective line. (Contributed by BJ, 27-Jun-2019)

Ref Expression
Assertion bj-rrhatsscchat ℝ̂ ⊆ ℂ̂

Proof

Step Hyp Ref Expression
1 axresscn ℝ ⊆ ℂ
2 unss1 ( ℝ ⊆ ℂ → ( ℝ ∪ { ∞ } ) ⊆ ( ℂ ∪ { ∞ } ) )
3 1 2 ax-mp ( ℝ ∪ { ∞ } ) ⊆ ( ℂ ∪ { ∞ } )
4 df-bj-rrhat ℝ̂ = ( ℝ ∪ { ∞ } )
5 df-bj-cchat ℂ̂ = ( ℂ ∪ { ∞ } )
6 3 4 5 3sstr4i ℝ̂ ⊆ ℂ̂