Metamath Proof Explorer
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
bnj133.1 |
⊢ ( 𝜑 ↔ ∃ 𝑥 𝜓 ) |
|
|
bnj133.2 |
⊢ ( 𝜒 ↔ 𝜓 ) |
|
Assertion |
bnj133 |
⊢ ( 𝜑 ↔ ∃ 𝑥 𝜒 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj133.1 |
⊢ ( 𝜑 ↔ ∃ 𝑥 𝜓 ) |
| 2 |
|
bnj133.2 |
⊢ ( 𝜒 ↔ 𝜓 ) |
| 3 |
2
|
exbii |
⊢ ( ∃ 𝑥 𝜒 ↔ ∃ 𝑥 𝜓 ) |
| 4 |
1 3
|
bitr4i |
⊢ ( 𝜑 ↔ ∃ 𝑥 𝜒 ) |