Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1454.1 | ⊢ 𝐴 = { 𝑥 ∣ 𝜑 } | |
| Assertion | bnj1454 | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ 𝐴 ↔ [ 𝐵 / 𝑥 ] 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1454.1 | ⊢ 𝐴 = { 𝑥 ∣ 𝜑 } | |
| 2 | 1 | eleq2i | ⊢ ( 𝐵 ∈ 𝐴 ↔ 𝐵 ∈ { 𝑥 ∣ 𝜑 } ) |
| 3 | df-sbc | ⊢ ( [ 𝐵 / 𝑥 ] 𝜑 ↔ 𝐵 ∈ { 𝑥 ∣ 𝜑 } ) | |
| 4 | 3 | a1i | ⊢ ( 𝐵 ∈ V → ( [ 𝐵 / 𝑥 ] 𝜑 ↔ 𝐵 ∈ { 𝑥 ∣ 𝜑 } ) ) |
| 5 | 2 4 | bitr4id | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ 𝐴 ↔ [ 𝐵 / 𝑥 ] 𝜑 ) ) |