| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj969.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 2 |
|
bnj969.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 3 |
|
bnj969.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 4 |
|
bnj969.10 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
| 5 |
|
bnj969.12 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 6 |
|
bnj969.14 |
⊢ ( 𝜏 ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 7 |
|
bnj969.15 |
⊢ ( 𝜎 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛 ) ) |
| 8 |
|
simpl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
| 9 |
|
bnj667 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 10 |
9 3 6
|
3imtr4i |
⊢ ( 𝜒 → 𝜏 ) |
| 11 |
10
|
3ad2ant1 |
⊢ ( ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) → 𝜏 ) |
| 12 |
11
|
adantl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → 𝜏 ) |
| 13 |
3
|
bnj1232 |
⊢ ( 𝜒 → 𝑛 ∈ 𝐷 ) |
| 14 |
|
vex |
⊢ 𝑚 ∈ V |
| 15 |
14
|
bnj216 |
⊢ ( 𝑛 = suc 𝑚 → 𝑚 ∈ 𝑛 ) |
| 16 |
|
id |
⊢ ( 𝑝 = suc 𝑛 → 𝑝 = suc 𝑛 ) |
| 17 |
13 15 16
|
3anim123i |
⊢ ( ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) → ( 𝑛 ∈ 𝐷 ∧ 𝑚 ∈ 𝑛 ∧ 𝑝 = suc 𝑛 ) ) |
| 18 |
|
3ancomb |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛 ) ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑚 ∈ 𝑛 ∧ 𝑝 = suc 𝑛 ) ) |
| 19 |
7 18
|
bitri |
⊢ ( 𝜎 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑚 ∈ 𝑛 ∧ 𝑝 = suc 𝑛 ) ) |
| 20 |
17 19
|
sylibr |
⊢ ( ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) → 𝜎 ) |
| 21 |
20
|
adantl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → 𝜎 ) |
| 22 |
8 12 21
|
jca32 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜏 ∧ 𝜎 ) ) ) |
| 23 |
|
bnj256 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜏 ∧ 𝜎 ) ) ) |
| 24 |
22 23
|
sylibr |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) ) |
| 25 |
4 6 7 1 2
|
bnj938 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
| 26 |
5 25
|
eqeltrid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) → 𝐶 ∈ V ) |
| 27 |
24 26
|
syl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → 𝐶 ∈ V ) |