| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj999.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 2 |
|
bnj999.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 3 |
|
bnj999.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 4 |
|
bnj999.7 |
⊢ ( 𝜑′ ↔ [ 𝑝 / 𝑛 ] 𝜑 ) |
| 5 |
|
bnj999.8 |
⊢ ( 𝜓′ ↔ [ 𝑝 / 𝑛 ] 𝜓 ) |
| 6 |
|
bnj999.9 |
⊢ ( 𝜒′ ↔ [ 𝑝 / 𝑛 ] 𝜒 ) |
| 7 |
|
bnj999.10 |
⊢ ( 𝜑″ ↔ [ 𝐺 / 𝑓 ] 𝜑′ ) |
| 8 |
|
bnj999.11 |
⊢ ( 𝜓″ ↔ [ 𝐺 / 𝑓 ] 𝜓′ ) |
| 9 |
|
bnj999.12 |
⊢ ( 𝜒″ ↔ [ 𝐺 / 𝑓 ] 𝜒′ ) |
| 10 |
|
bnj999.15 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 11 |
|
bnj999.16 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) |
| 12 |
|
vex |
⊢ 𝑝 ∈ V |
| 13 |
3 4 5 6 12
|
bnj919 |
⊢ ( 𝜒′ ↔ ( 𝑝 ∈ 𝐷 ∧ 𝑓 Fn 𝑝 ∧ 𝜑′ ∧ 𝜓′ ) ) |
| 14 |
11
|
bnj918 |
⊢ 𝐺 ∈ V |
| 15 |
13 7 8 9 14
|
bnj976 |
⊢ ( 𝜒″ ↔ ( 𝑝 ∈ 𝐷 ∧ 𝐺 Fn 𝑝 ∧ 𝜑″ ∧ 𝜓″ ) ) |
| 16 |
15
|
bnj1254 |
⊢ ( 𝜒″ → 𝜓″ ) |
| 17 |
16
|
anim1i |
⊢ ( ( 𝜒″ ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) ) → ( 𝜓″ ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) ) ) |
| 18 |
|
bnj252 |
⊢ ( ( 𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) ↔ ( 𝜒″ ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) ) ) |
| 19 |
|
bnj252 |
⊢ ( ( 𝜓″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) ↔ ( 𝜓″ ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) ) ) |
| 20 |
17 18 19
|
3imtr4i |
⊢ ( ( 𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) → ( 𝜓″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) ) |
| 21 |
|
ssiun2 |
⊢ ( 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 22 |
21
|
bnj708 |
⊢ ( ( 𝜓″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 23 |
|
3simpa |
⊢ ( ( 𝜓″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ) → ( 𝜓″ ∧ 𝑖 ∈ ω ) ) |
| 24 |
23
|
ancomd |
⊢ ( ( 𝜓″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ) → ( 𝑖 ∈ ω ∧ 𝜓″ ) ) |
| 25 |
|
simp3 |
⊢ ( ( 𝜓″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ) → suc 𝑖 ∈ 𝑝 ) |
| 26 |
2 5 12
|
bnj539 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑝 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 27 |
26 8 10 11
|
bnj965 |
⊢ ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑝 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 28 |
27
|
bnj228 |
⊢ ( ( 𝑖 ∈ ω ∧ 𝜓″ ) → ( suc 𝑖 ∈ 𝑝 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 29 |
24 25 28
|
sylc |
⊢ ( ( 𝜓″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ) → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 30 |
29
|
bnj721 |
⊢ ( ( 𝜓″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 31 |
22 30
|
sseqtrrd |
⊢ ( ( 𝜓″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) ) |
| 32 |
20 31
|
syl |
⊢ ( ( 𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) ) |