Metamath Proof Explorer


Theorem brdomi

Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015) Avoid ax-un . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion brdomi ( 𝐴𝐵 → ∃ 𝑓 𝑓 : 𝐴1-1𝐵 )

Proof

Step Hyp Ref Expression
1 reldom Rel ≼
2 1 brrelex12i ( 𝐴𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
3 brdom2g ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝐵 ) )
4 2 3 syl ( 𝐴𝐵 → ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1𝐵 ) )
5 4 ibi ( 𝐴𝐵 → ∃ 𝑓 𝑓 : 𝐴1-1𝐵 )