Metamath Proof Explorer


Theorem brwdomi

Description: Property of weak dominance, forward direction only. (Contributed by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion brwdomi ( 𝑋* 𝑌 → ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) )

Proof

Step Hyp Ref Expression
1 relwdom Rel ≼*
2 1 brrelex2i ( 𝑋* 𝑌𝑌 ∈ V )
3 brwdom ( 𝑌 ∈ V → ( 𝑋* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) ) )
4 2 3 syl ( 𝑋* 𝑌 → ( 𝑋* 𝑌 ↔ ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) ) )
5 4 ibi ( 𝑋* 𝑌 → ( 𝑋 = ∅ ∨ ∃ 𝑧 𝑧 : 𝑌onto𝑋 ) )