| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvmpo1.1 |
⊢ Ⅎ 𝑥 𝐵 |
| 2 |
|
cbvmpo1.2 |
⊢ Ⅎ 𝑧 𝐵 |
| 3 |
|
cbvmpo1.3 |
⊢ Ⅎ 𝑧 𝐶 |
| 4 |
|
cbvmpo1.4 |
⊢ Ⅎ 𝑥 𝐸 |
| 5 |
|
cbvmpo1.5 |
⊢ ( 𝑥 = 𝑧 → 𝐶 = 𝐸 ) |
| 6 |
|
nfv |
⊢ Ⅎ 𝑧 𝑥 ∈ 𝐴 |
| 7 |
2
|
nfcri |
⊢ Ⅎ 𝑧 𝑦 ∈ 𝐵 |
| 8 |
6 7
|
nfan |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
| 9 |
3
|
nfeq2 |
⊢ Ⅎ 𝑧 𝑢 = 𝐶 |
| 10 |
8 9
|
nfan |
⊢ Ⅎ 𝑧 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) |
| 11 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 |
| 12 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 |
| 13 |
11 12
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
| 14 |
4
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑢 = 𝐸 |
| 15 |
13 14
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) |
| 16 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
| 17 |
16
|
anbi1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 18 |
5
|
eqeq2d |
⊢ ( 𝑥 = 𝑧 → ( 𝑢 = 𝐶 ↔ 𝑢 = 𝐸 ) ) |
| 19 |
17 18
|
anbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) ) ) |
| 20 |
10 15 19
|
cbvoprab1 |
⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) } = { 〈 〈 𝑧 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) } |
| 21 |
|
df-mpo |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑥 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐶 ) } |
| 22 |
|
df-mpo |
⊢ ( 𝑧 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐸 ) = { 〈 〈 𝑧 , 𝑦 〉 , 𝑢 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = 𝐸 ) } |
| 23 |
20 21 22
|
3eqtr4i |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐸 ) |