Description: Change bound variable and domain in the restricted at-most-one quantifier, using implicit substitution. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvrmovw2.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
cbvrmovw2.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
Assertion | cbvrmovw2 | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑦 ∈ 𝐵 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrmovw2.1 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
2 | cbvrmovw2.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
3 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
4 | 1 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
5 | 3 4 | bitrd | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
6 | 5 2 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) |
7 | 6 | cbvmovw | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) |
8 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
9 | df-rmo | ⊢ ( ∃* 𝑦 ∈ 𝐵 𝜓 ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) | |
10 | 7 8 9 | 3bitr4i | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑦 ∈ 𝐵 𝜓 ) |