Metamath Proof Explorer


Theorem cdlemg3a

Description: Part of proof of Lemma G in Crawley p. 116, line 19. Show p \/ q = p \/ u. TODO: reformat cdleme0cp to match this, then replace with cdleme0cp . (Contributed by NM, 19-Apr-2013)

Ref Expression
Hypotheses cdlemg3.l = ( le ‘ 𝐾 )
cdlemg3.j = ( join ‘ 𝐾 )
cdlemg3.m = ( meet ‘ 𝐾 )
cdlemg3.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg3.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg3.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
Assertion cdlemg3a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) → ( 𝑃 𝑄 ) = ( 𝑃 𝑈 ) )

Proof

Step Hyp Ref Expression
1 cdlemg3.l = ( le ‘ 𝐾 )
2 cdlemg3.j = ( join ‘ 𝐾 )
3 cdlemg3.m = ( meet ‘ 𝐾 )
4 cdlemg3.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg3.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg3.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 1 2 3 4 5 6 cdleme8 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) → ( 𝑃 𝑈 ) = ( 𝑃 𝑄 ) )
8 7 eqcomd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) → ( 𝑃 𝑄 ) = ( 𝑃 𝑈 ) )