Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdlemg3a
Metamath Proof Explorer
Description: Part of proof of Lemma G in Crawley p. 116, line 19. Show p \/ q
= p \/ u. TODO: reformat cdleme0cp to match this, then replace
with cdleme0cp . (Contributed by NM , 19-Apr-2013)
Ref
Expression
Hypotheses
cdlemg3.l
⊢ ≤ = ( le ‘ 𝐾 )
cdlemg3.j
⊢ ∨ = ( join ‘ 𝐾 )
cdlemg3.m
⊢ ∧ = ( meet ‘ 𝐾 )
cdlemg3.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg3.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg3.u
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 )
Assertion
cdlemg3a
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑃 ∨ 𝑈 ) )
Proof
Step
Hyp
Ref
Expression
1
cdlemg3.l
⊢ ≤ = ( le ‘ 𝐾 )
2
cdlemg3.j
⊢ ∨ = ( join ‘ 𝐾 )
3
cdlemg3.m
⊢ ∧ = ( meet ‘ 𝐾 )
4
cdlemg3.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
5
cdlemg3.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
6
cdlemg3.u
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 )
7
1 2 3 4 5 6
cdleme8
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑈 ) = ( 𝑃 ∨ 𝑄 ) )
8
7
eqcomd
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑃 ∨ 𝑈 ) )