Description: Hilbert lattice join distributes over itself. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chj12.1 | ⊢ 𝐴 ∈ Cℋ | |
| chj12.2 | ⊢ 𝐵 ∈ Cℋ | ||
| chj12.3 | ⊢ 𝐶 ∈ Cℋ | ||
| Assertion | chjjdiri | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) = ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chj12.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chj12.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | chj12.3 | ⊢ 𝐶 ∈ Cℋ | |
| 4 | 3 | chjidmi | ⊢ ( 𝐶 ∨ℋ 𝐶 ) = 𝐶 |
| 5 | 4 | oveq2i | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ ( 𝐶 ∨ℋ 𝐶 ) ) = ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) |
| 6 | 1 2 3 3 | chj4i | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ ( 𝐶 ∨ℋ 𝐶 ) ) = ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) |
| 7 | 5 6 | eqtr3i | ⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∨ℋ 𝐶 ) = ( ( 𝐴 ∨ℋ 𝐶 ) ∨ℋ ( 𝐵 ∨ℋ 𝐶 ) ) |