Metamath Proof Explorer
Description: Subspace sum is smaller than subspace join. Remark in Kalmbach
p. 65. (Contributed by NM, 17-Oct-1999)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
ch0le.1 |
⊢ 𝐴 ∈ Cℋ |
|
|
chjcl.2 |
⊢ 𝐵 ∈ Cℋ |
|
Assertion |
chsleji |
⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ch0le.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
chjcl.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
1
|
chshii |
⊢ 𝐴 ∈ Sℋ |
| 4 |
2
|
chshii |
⊢ 𝐵 ∈ Sℋ |
| 5 |
3 4
|
shsleji |
⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |