Metamath Proof Explorer


Theorem cjne0

Description: A number is nonzero iff its complex conjugate is nonzero. (Contributed by NM, 29-Apr-2005)

Ref Expression
Assertion cjne0 ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ ( ∗ ‘ 𝐴 ) ≠ 0 ) )

Proof

Step Hyp Ref Expression
1 cj0 ( ∗ ‘ 0 ) = 0
2 1 eqeq2i ( ( ∗ ‘ 𝐴 ) = ( ∗ ‘ 0 ) ↔ ( ∗ ‘ 𝐴 ) = 0 )
3 0cn 0 ∈ ℂ
4 cj11 ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( ∗ ‘ 𝐴 ) = ( ∗ ‘ 0 ) ↔ 𝐴 = 0 ) )
5 3 4 mpan2 ( 𝐴 ∈ ℂ → ( ( ∗ ‘ 𝐴 ) = ( ∗ ‘ 0 ) ↔ 𝐴 = 0 ) )
6 2 5 syl5rbbr ( 𝐴 ∈ ℂ → ( 𝐴 = 0 ↔ ( ∗ ‘ 𝐴 ) = 0 ) )
7 6 necon3bid ( 𝐴 ∈ ℂ → ( 𝐴 ≠ 0 ↔ ( ∗ ‘ 𝐴 ) ≠ 0 ) )