Description: Every member N of the closed neighborhood of a vertex K is a vertex. (Contributed by AV, 9-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clnbgrvtxel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | clnbgrisvtx | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) → 𝑁 ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrvtxel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | clnbgrel | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑁 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ) ) ) |
| 4 | simpll | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑁 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ) ) → 𝑁 ∈ 𝑉 ) | |
| 5 | 3 4 | sylbi | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) → 𝑁 ∈ 𝑉 ) |