Description: The closure of the empty set. (Contributed by NM, 2-Oct-2007) (Proof shortened by Jim Kingdon, 12-Mar-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | cls0 | ⊢ ( 𝐽 ∈ Top → ( ( cls ‘ 𝐽 ) ‘ ∅ ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cld | ⊢ ( 𝐽 ∈ Top → ∅ ∈ ( Clsd ‘ 𝐽 ) ) | |
2 | cldcls | ⊢ ( ∅ ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ∅ ) = ∅ ) | |
3 | 1 2 | syl | ⊢ ( 𝐽 ∈ Top → ( ( cls ‘ 𝐽 ) ‘ ∅ ) = ∅ ) |