Metamath Proof Explorer


Theorem cnlnadji

Description: Every continuous linear operator has an adjoint. Theorem 3.10 of Beran p. 104. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypotheses cnlnadj.1 𝑇 ∈ LinOp
cnlnadj.2 𝑇 ∈ ContOp
Assertion cnlnadji 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡𝑦 ) )

Proof

Step Hyp Ref Expression
1 cnlnadj.1 𝑇 ∈ LinOp
2 cnlnadj.2 𝑇 ∈ ContOp
3 eqid ( 𝑔 ∈ ℋ ↦ ( ( 𝑇𝑔 ) ·ih 𝑧 ) ) = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇𝑔 ) ·ih 𝑧 ) )
4 oveq2 ( 𝑓 = 𝑤 → ( 𝑣 ·ih 𝑓 ) = ( 𝑣 ·ih 𝑤 ) )
5 4 eqeq2d ( 𝑓 = 𝑤 → ( ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) )
6 5 ralbidv ( 𝑓 = 𝑤 → ( ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ↔ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) ) )
7 6 cbvriotavw ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) = ( 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑤 ) )
8 eqid ( 𝑧 ∈ ℋ ↦ ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) ) = ( 𝑧 ∈ ℋ ↦ ( 𝑓 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇𝑣 ) ·ih 𝑧 ) = ( 𝑣 ·ih 𝑓 ) ) )
9 1 2 3 7 8 cnlnadjlem9 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡𝑦 ) )