Description: Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntri.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntri.p | ⊢ + = ( +g ‘ 𝑀 ) | ||
| cntri.z | ⊢ 𝑍 = ( Cntr ‘ 𝑀 ) | ||
| Assertion | cntri | ⊢ ( ( 𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntri.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntri.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 3 | cntri.z | ⊢ 𝑍 = ( Cntr ‘ 𝑀 ) | |
| 4 | eqid | ⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 ) | |
| 5 | 1 4 | cntrval | ⊢ ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) = ( Cntr ‘ 𝑀 ) |
| 6 | 3 5 | eqtr4i | ⊢ 𝑍 = ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) |
| 7 | 6 | eleq2i | ⊢ ( 𝑋 ∈ 𝑍 ↔ 𝑋 ∈ ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) ) |
| 8 | 2 4 | cntzi | ⊢ ( ( 𝑋 ∈ ( ( Cntz ‘ 𝑀 ) ‘ 𝐵 ) ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 9 | 7 8 | sylanb | ⊢ ( ( 𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |