Description: The cosine of -u _pi / 2 is zero. (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosneghalfpi | ⊢ ( cos ‘ - ( π / 2 ) ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 2 | 1 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 3 | cosneg | ⊢ ( ( π / 2 ) ∈ ℂ → ( cos ‘ - ( π / 2 ) ) = ( cos ‘ ( π / 2 ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( cos ‘ - ( π / 2 ) ) = ( cos ‘ ( π / 2 ) ) |
| 5 | coshalfpi | ⊢ ( cos ‘ ( π / 2 ) ) = 0 | |
| 6 | 4 5 | eqtri | ⊢ ( cos ‘ - ( π / 2 ) ) = 0 |