Metamath Proof Explorer
		
		
		
		Description:  Ordering property for complex exponentiation.  (Contributed by Mario
         Carneiro, 30-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | recxpcld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | recxpcld.2 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
					
						|  |  | recxpcld.3 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
					
						|  |  | mulcxpd.4 | ⊢ ( 𝜑  →  0  ≤  𝐵 ) | 
					
						|  |  | cxple2d.5 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
				
					|  | Assertion | cxple2d | ⊢  ( 𝜑  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴 ↑𝑐 𝐶 )  ≤  ( 𝐵 ↑𝑐 𝐶 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recxpcld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | recxpcld.2 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
						
							| 3 |  | recxpcld.3 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | mulcxpd.4 | ⊢ ( 𝜑  →  0  ≤  𝐵 ) | 
						
							| 5 |  | cxple2d.5 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 6 |  | cxple2 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴 ↑𝑐 𝐶 )  ≤  ( 𝐵 ↑𝑐 𝐶 ) ) ) | 
						
							| 7 | 1 2 3 4 5 6 | syl221anc | ⊢ ( 𝜑  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴 ↑𝑐 𝐶 )  ≤  ( 𝐵 ↑𝑐 𝐶 ) ) ) |