Metamath Proof Explorer
Description: The sum of two multiples of 10 is a multiple of 10. (Contributed by AV, 30-Jul-2021)
|
|
Ref |
Expression |
|
Hypotheses |
decaddm10.a |
⊢ 𝐴 ∈ ℕ0 |
|
|
decaddm10.b |
⊢ 𝐵 ∈ ℕ0 |
|
Assertion |
decaddm10 |
⊢ ( ; 𝐴 0 + ; 𝐵 0 ) = ; ( 𝐴 + 𝐵 ) 0 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decaddm10.a |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
decaddm10.b |
⊢ 𝐵 ∈ ℕ0 |
| 3 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 4 |
|
eqid |
⊢ ; 𝐴 0 = ; 𝐴 0 |
| 5 |
|
eqid |
⊢ ; 𝐵 0 = ; 𝐵 0 |
| 6 |
|
eqid |
⊢ ( 𝐴 + 𝐵 ) = ( 𝐴 + 𝐵 ) |
| 7 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 8 |
1 3 2 3 4 5 6 7
|
decadd |
⊢ ( ; 𝐴 0 + ; 𝐵 0 ) = ; ( 𝐴 + 𝐵 ) 0 |