Metamath Proof Explorer


Theorem decltdi

Description: Comparing a digit to a decimal integer. (Contributed by AV, 8-Sep-2021)

Ref Expression
Hypotheses declti.a 𝐴 ∈ ℕ
declti.b 𝐵 ∈ ℕ0
declti.c 𝐶 ∈ ℕ0
decltdi.4 𝐶 ≤ 9
Assertion decltdi 𝐶 < 𝐴 𝐵

Proof

Step Hyp Ref Expression
1 declti.a 𝐴 ∈ ℕ
2 declti.b 𝐵 ∈ ℕ0
3 declti.c 𝐶 ∈ ℕ0
4 decltdi.4 𝐶 ≤ 9
5 3 4 le9lt10 𝐶 < 1 0
6 1 2 3 5 declti 𝐶 < 𝐴 𝐵