| Step |
Hyp |
Ref |
Expression |
| 0 |
|
c1stc |
⊢ 1stω |
| 1 |
|
vj |
⊢ 𝑗 |
| 2 |
|
ctop |
⊢ Top |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
1
|
cv |
⊢ 𝑗 |
| 5 |
4
|
cuni |
⊢ ∪ 𝑗 |
| 6 |
|
vy |
⊢ 𝑦 |
| 7 |
4
|
cpw |
⊢ 𝒫 𝑗 |
| 8 |
6
|
cv |
⊢ 𝑦 |
| 9 |
|
cdom |
⊢ ≼ |
| 10 |
|
com |
⊢ ω |
| 11 |
8 10 9
|
wbr |
⊢ 𝑦 ≼ ω |
| 12 |
|
vz |
⊢ 𝑧 |
| 13 |
3
|
cv |
⊢ 𝑥 |
| 14 |
12
|
cv |
⊢ 𝑧 |
| 15 |
13 14
|
wcel |
⊢ 𝑥 ∈ 𝑧 |
| 16 |
14
|
cpw |
⊢ 𝒫 𝑧 |
| 17 |
8 16
|
cin |
⊢ ( 𝑦 ∩ 𝒫 𝑧 ) |
| 18 |
17
|
cuni |
⊢ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) |
| 19 |
13 18
|
wcel |
⊢ 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) |
| 20 |
15 19
|
wi |
⊢ ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) |
| 21 |
20 12 4
|
wral |
⊢ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) |
| 22 |
11 21
|
wa |
⊢ ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) |
| 23 |
22 6 7
|
wrex |
⊢ ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) |
| 24 |
23 3 5
|
wral |
⊢ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) |
| 25 |
24 1 2
|
crab |
⊢ { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) } |
| 26 |
0 25
|
wceq |
⊢ 1stω = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ ∪ 𝑗 ∃ 𝑦 ∈ 𝒫 𝑗 ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ 𝑗 ( 𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) ) } |