Metamath Proof Explorer


Definition df-asin

Description: Define the arcsine function. Because sin is not a one-to-one function, the literal inverse ` ``' sin is not a function. Rather than attempt to find the right domain on which to restrict sin in order to get a total function, we just define it in terms of log , which we already know is total (except at 0 ). There are branch points at -u 1 and 1 (at which the function is defined), and branch cuts along the real line not between -u 1 and 1 , which is to say ( -oo , -u 1 ) u. ( 1 , +oo ) ` . (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Assertion df-asin arcsin = ( 𝑥 ∈ ℂ ↦ ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 casin arcsin
1 vx 𝑥
2 cc
3 ci i
4 3 cneg - i
5 cmul ·
6 clog log
7 1 cv 𝑥
8 3 7 5 co ( i · 𝑥 )
9 caddc +
10 csqrt
11 c1 1
12 cmin
13 cexp
14 c2 2
15 7 14 13 co ( 𝑥 ↑ 2 )
16 11 15 12 co ( 1 − ( 𝑥 ↑ 2 ) )
17 16 10 cfv ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) )
18 8 17 9 co ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) )
19 18 6 cfv ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) )
20 4 19 5 co ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) )
21 1 2 20 cmpt ( 𝑥 ∈ ℂ ↦ ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) )
22 0 21 wceq arcsin = ( 𝑥 ∈ ℂ ↦ ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) )