| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccau |
⊢ Cau |
| 1 |
|
vd |
⊢ 𝑑 |
| 2 |
|
cxmet |
⊢ ∞Met |
| 3 |
2
|
crn |
⊢ ran ∞Met |
| 4 |
3
|
cuni |
⊢ ∪ ran ∞Met |
| 5 |
|
vf |
⊢ 𝑓 |
| 6 |
1
|
cv |
⊢ 𝑑 |
| 7 |
6
|
cdm |
⊢ dom 𝑑 |
| 8 |
7
|
cdm |
⊢ dom dom 𝑑 |
| 9 |
|
cpm |
⊢ ↑pm |
| 10 |
|
cc |
⊢ ℂ |
| 11 |
8 10 9
|
co |
⊢ ( dom dom 𝑑 ↑pm ℂ ) |
| 12 |
|
vx |
⊢ 𝑥 |
| 13 |
|
crp |
⊢ ℝ+ |
| 14 |
|
vj |
⊢ 𝑗 |
| 15 |
|
cz |
⊢ ℤ |
| 16 |
5
|
cv |
⊢ 𝑓 |
| 17 |
|
cuz |
⊢ ℤ≥ |
| 18 |
14
|
cv |
⊢ 𝑗 |
| 19 |
18 17
|
cfv |
⊢ ( ℤ≥ ‘ 𝑗 ) |
| 20 |
16 19
|
cres |
⊢ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) |
| 21 |
18 16
|
cfv |
⊢ ( 𝑓 ‘ 𝑗 ) |
| 22 |
|
cbl |
⊢ ball |
| 23 |
6 22
|
cfv |
⊢ ( ball ‘ 𝑑 ) |
| 24 |
12
|
cv |
⊢ 𝑥 |
| 25 |
21 24 23
|
co |
⊢ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) |
| 26 |
19 25 20
|
wf |
⊢ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) |
| 27 |
26 14 15
|
wrex |
⊢ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) |
| 28 |
27 12 13
|
wral |
⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) |
| 29 |
28 5 11
|
crab |
⊢ { 𝑓 ∈ ( dom dom 𝑑 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) } |
| 30 |
1 4 29
|
cmpt |
⊢ ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( dom dom 𝑑 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) } ) |
| 31 |
0 30
|
wceq |
⊢ Cau = ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( dom dom 𝑑 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) } ) |